I created an updated "GPU ONLY" app_info for Einstein. I tested it and it works fine. Just change the gpu_ram line to suit your card.HTML Code:<app_info> <app> <name>einsteinbinary_BRP4</name> <user_friendly_name>Binary Radio Pulsar Search (Arecibo)</user_friendly_name> </app> <file_info> <name>einsteinbinary_BRP4_1.00_windows_intelx86__BRP3cuda32.exe</name> <executable/> </file_info> <file_info> <name>cudart_xp32_32_16.dll</name> <executable/> </file_info> <file_info> <name>cufft_xp32_32_16.dll</name> <executable/> </file_info> <file_info> <name>db.dev.win.3d35195e</name> </file_info> <file_info> <name>dbhs.dev.win.3d35195e</name> </file_info> <app_version> <app_name>einsteinbinary_BRP4</app_name> <version_num>100</version_num> <platform>windows_intelx86</platform> <avg_ncpus>0.200000</avg_ncpus> <max_ncpus>1.000000</max_ncpus> <flops>32706701893.376610</flops> <plan_class>BRP3cuda32</plan_class> <api_version>6.13.0</api_version> <file_ref> <file_name>einsteinbinary_BRP4_1.00_windows_intelx86__BRP3cuda32.exe</file_name> <main_program/> </file_ref> <file_ref> <file_name>cudart_xp32_32_16.dll</file_name> <open_name>cudart32_32_16.dll</open_name> <copy_file/> </file_ref> <file_ref> <file_name>cufft_xp32_32_16.dll</file_name> <open_name>cufft32_32_16.dll</open_name> <copy_file/> </file_ref> <file_ref> <file_name>db.dev.win.3d35195e</file_name> <open_name>db.dev</open_name> <copy_file/> </file_ref> <file_ref> <file_name>dbhs.dev.win.3d35195e</file_name> <open_name>dbhs.dev</open_name> <copy_file/> </file_ref> <coproc> <type>CUDA</type> <count>0.500000</count> </coproc> <gpu_ram>314572800.000000</gpu_ram> </app_version> </app_info>
I did this because I wanted to get my gpu usage % maxed out as it was only around 60%. Seems like a waste of gpu power to run it like that. The app_info will run 2 wu's per gpu. So far, it appears that it is still running at around 60%, so even though I have 2 tasks running at a time, it will now take 2 times as long to finish, so it's a wash.
I have 2 threads free and overall cpu usage is at around 90%, so I have room to spare.
I may fiddle with the following to see if increasing the values helps.
<avg_ncpus>0.200000</avg_ncpus>
<max_ncpus>1.000000</max_ncpus>
Anyone successful in getting Einstein@home to use all of your GPU?





Reply With Quote



(1st Place)



